

Comparação do Balanço Hídrico Climatológico Realizado com dados de Reanálise e dados Observados para a cidade de Corumbá

Christhyan Paixão de Godoy lopes ¹ Priscilla Teles de Oliveira²

Biodiversidade e Conservação

Resumo

Uma das formas de se monitorar o armazenamento de água no solo é realizando o balanço hídrico climatológico, que disponibiliza esta e outras variáveis que têm fundamental importância para o desenvolvimento de culturas e safras. A metodologia utilizada é a proposta por Thornthwaite & Mather (1955). Na região de Corumbá-MS, realizou-se a classificação climática segundo Koppen-Geiger e o cálculo da evapotranspiração referencial pelo método proposto por Penman Monteith. Como muitas regiões no Brasil não possuem estações meteorológicas, uma alternativa para se realizar este balanço é a utilização de dados de reanálises. Utilizando os dados do ERA-5 Land foi realizada a climatologia mensal, para o período de 1981 a 2010, das variáveis meteorológicas que foram utilizadas para comparação com o balanço hídrico climatológico disponível pelo Instituto Nacional de Meteorologia (INMET) no site do Sisdagro, que utilizam dados observados de estações convencionais e automáticas. A Capacidade de água disponível (CAD) utilizada para realizar o balanco hídrico é 100 mm. A comparação dos balanços hídricos, evidencia que a curva característica do ERA-5 Land se assemelha a da estação do INMET, porém com valores ora acima e ora abaixo, tendo uma subestimação do déficit e uma superestimação do Excedente hídrico. Os dados de reanálise para Corumbá não representam bem o balanço hídrico da região. A CAD utilizada para esta região pode ser substituída uma vez que é utilizada a de 100 mm por padrão em todas as estações do INMET.

Palavras-chave: Balanço Hídrico; ERA-5 LAND; Evapotranspiração

² Orientação: Profa. Dra. Priscilla Teles de Oliveira, Unesp/FC/Bauru, Departamento de Física e Meteorologia, priscilla.teles@unesp.br

¹Aluno Unesp/FC/Bauru, do Curso Meteorologia, Departamento Física Meteorologia, Christhyan.paixao@unesp.br

Introdução

A cidade de Corumbá (Figura 1) é uma das cidades mais desenvolvidas do Pantanal, sendo conhecida como capital do Pantanal por ser a cidade urbana principal da região, contando com alto desenvolvimento tecnológico e Ambiental, apresentando diversas políticas públicas voltadas para a preservação de seu bioma, (Prefeitura Corumbá, 2023). Sua região se estende por 64 721,719 km² a uma altitude de 115m, fazendo fronteira com Paraguai e Bolívia, Corumbá tem 112.058 habitantes segundo IBGE 2020.

Figura 1: Região de estudo: a) Brasil, b) Mato Grosso do Sul e c) Corumbá.

Fonte: Google maps.

Esta região cada vez mais se encontra em perigo com o avanço do agronegócio não sustentável, que quando não respeitam as leis ambientais acabam ocasionando as incidências de queimadas na região, gerando diversos outros problemas para o meio ambiente e para saúde local (Vicente, 2016). O balanço hídrico é um parâmetro importante para a agricultura, pois suas informações possibilitam o estudo do fluxo de água disponível no solo, possibilitando saber a época necessária de irrigação para evitar o déficit hídrico onde acaba por influenciar na qualidade das safras das culturas. A coleta de dados meteorológicos é importante para realizar o balanço hídrico climatológico (BHC) de uma região.

Uma série descontínua de dados gera uma limitação nos estudos, uma alternativa são as reanálises, que trazem dados espaciais e temporais homogêneos em pontos de grades, interpolando os espaços onde a medida é faltante, utilizando dados de estações como base. Estas reanálises estão sendo aprimoradas ao longo dos anos, atualmente a reanálise do ERA 5 Land apresenta uma maior resolução espacial, mas sem muitos estudos quanto a sua acurácia.

O INMET apresenta dados disponíveis para a população sobre o balanço hídrico climatológico em diversas estações meteorológicas tanto convencionais quanto automáticas. Porém devido à falta de investimento não apresenta estações em todas as regiões do país, fazendo com que existam áreas sem esse balanço hídrico.

O objetivo do trabalho foi comparar os balanços hídrico climatológicos para a região de Corumbá-MS, utilizando dados observados e dados de reanálise pelo método de Thornthwaite & Mather (1955), e entender a diferença nos resultados. Para isso foi necessário calcular a evapotranspiração potencial pelo método proposto por Allen (1998).

METODOLOGIA

Para as médias mensais das variáveis de Temperatura do ar (K), temperatura do ponto de orvalho (K), precipitação mensal acumulada (m), onda longa e onda curta líquida (J/m²), componente zonal e meridional do vento (m/s), foram utilizadas a reanálise do modelo meteorológico European Centre for Medium-Range Weather Forecasts (ECMWF), o ERA-5 Land, que apresenta uma resolução espacial de 0,1° latitude por 0,1° longitude, para as coordenadas 19°S, 57,67°W, o período da coleta dos dados foi de 1981 a 2010 (Muñoz, 2019).

Os dados observados foram coletados do site sisdagro produto do INMET, que disponibiliza o balanço hídrico e seus componentes: Armazenamento de água disponível, excedente hídrico e déficit hídrico.

Para a realização da classificação climática, foram utilizadas variáveis de precipitação acumulada e temperatura média mensal, seguindo os parâmetros propostos por Geigel. No cálculo da evapotranspiração referencial de Penman Monteith (mm) foi utilizado as variáveis de Radiação de onda

curta e onda longa líquida na superfície, vento zonal, vento meridional, precipitação, temperatura do ar e temperatura do ponto de orvalho seguindo o método proposto por ALLEN (1998).

Equação de Penman Monteith

$$EToPMF = \frac{0.408 \, \Delta (Rn - G) \frac{\tilde{\alpha}900 U_2 (e_s - e_a)}{T + 273}}{\Delta + \tilde{\alpha} (1 + 0.34 U_2)}$$

Δ- Declividade da Curva de Pressão de vapor a temperatura (kPa° C^{-1});

 $\tilde{\alpha}$ - Coeficiente psicométrico (kPa° C^{-1});

 U_2 - É a velocidade do vento a 2 m de altura (m s^{-1});

T - É a temperatura média do ar (°C);

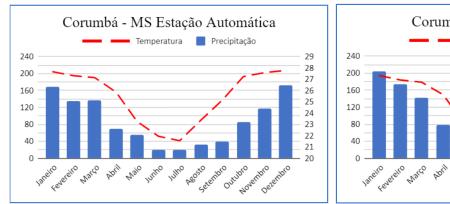
 e_s - É a pressão de saturação de vapor (kPa);

 e_a - É a pressão de vapor (kPa);

Rn-É o saldo de radiação diário (MJm⁻²dias⁻¹);

G- É o fluxo total diário de calor de solo (MJ m^{-2} dias $^{-1}$);

Na realização do balanço hídrico climatológico (BHC), foi utilizado a precipitação acumulada, a capacidade de água disponível (CAD) de 100mm, temperatura e evapotranspiração referencial, seguindo o método de Thornthwaite & Mather (1955).


Resultados e Discussão

Classificação Koppen-Geiger

A média da temperatura se apresenta acima de 20°C durante o ano inteiro sendo uma região bem quente, suas menores temperaturas são vistas no período do inverno (Junho, Julho e Agosto) e no verão (Setembro, Outubro e Novembro) são vistas suas maiores temperaturas. Já a precipitação se concentra na estação do verão tendo uma diminuição no inverno (Figura 2). Analisando o comportamento da temperatura que se manter acima de 20°C durante o ano todo e não apresentar uma estação bem definida de inverno, a sua primeira letra é A, por sua precipitação ficar abaixo de 40mm

nos meses menos chuvosos acaba recebendo a letra w. Seu clima é classificado como Aw, clima de savana. Indicando épocas de chuvas intensas e períodos secos intensos tendo uma grande variabilidade de suas bacias.



Figura 2: Comparação dos gráficos de temperatura e precipitação dos dados de estação automática e reanálise ERA5 Land.

Evapotranspiração Referencial:

Para obter os dados do vento foi realizada a equação de Pitágoras utilizando as componentes zonais e meridionais, onde obtivemos a real intensidade do vento. O fluxo de calor do solo não é possível ser obtido pela reanálise, porém pode ser considerado zero segundo ALLEN (1998). Para encontrar umidade relativa e a pressão de vapor saturado foi utilizado a temperatura do ponto de Orvalho e a equação de Clausius-Clapeyron, tanto para pressão de vapor saturada quanto para a pressão de vapor seco.

Seguindo a metodologia proposta por ALLEN (1998), no Quadro 1 tem-se os valores para evapotranspiração referencial.

Balanço hídrico Climatológico:

Utilizando a plataforma do Excel, foi realizado o balanço hídrico climatológico e obtido os resultados apresentados no quadro da Quadro 2.

14

14

Novembro

EXTREMOS CLIMÁTICOS: IMPACTOS ATUAIS E RISCOS FUTUROS

Pressão atmosferica

Coeficiente

Psicometrico

3,629

0.06644

2,622

0,211

0.213

133,493

141.029

99.91291992

				(KFa)		(kPa/°C)			
Mês	Fluxo de Radiação liquida	Vento Zonal	Vento Meridional	Temperatura de	Velociade do	Pressão de Vapor	Pressão de	Declividade	EToPMF
	na superficie(MJ/m²)	(m/s)	(m/s)	Buldo umido(°C)	vento(m/s)	saturado (kPa)	vapor (kPa)	(kPa /°C)	(mm)/mês
Janeiro	14	10,10	5,54	23,3	1	3,651	2,894	0,212	137,910
Fevereiro	13	7,47	16,27	23,2	1	3,577	2,864	0,208	126,562
Março	12	5,02	18,95	23,1	1	3,538	2,848	0,206	114,455
Abril	10	12,91	18,76	21,1	0	3,317	2,525	0,195	100,804
Maio	8	-10,57	18,24	18	1	2,849	2,083	0,17	76,653
Junho	7	14,90	3,19	16,3	1	2,656	1,871	0,16	68,891
Julho	7	16,51	3,39	14,4	1	2,617	1,660	0,158	75,173
Agosto	9	7,11	3,47	14,9	1	3,004	1,716	0,179	94,831
Setembro	11	-11,36	3,95	16,8	0	3,297	1,927	0,195	110,681
Outubro	13	4,51	14,52	20.5	1	3,615	2,436	0,21	134,501

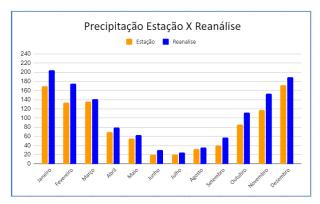
21.7

13,63

6.13

Quadro 1: Cálculo da evapotranspiração referencial.

Observando a Figura 3, podemos verificar que o valores de precipitação do ERA 5 LAND ficam maiores que os dados observados da estação automática, com uma superestimação de quase 50mm, mas mantendo uma coerência com o padrão de variabilidade, seguindo a climatologia de precipitação da região, apresentando maiores valores no verão e menores no inverno. Percebemos que a diferença diminui na época seca da região, tendo um comportamento mais próximo do observado. O comportamento da temperatura se mantém estável com uma diferença máxima de 0,7 °C de temperatura para o observado, conseguindo representar bem a região. Verificando a evapotranspiração referencial (ETo) (Quadro 2), existe uma maior diferença nos meses com maior amplitude térmica, visto que a ETo depende da temperatura. Podemos supor que os dados de reanálises de precipitação da região não representam bem o comportamento da variável, o que pode ser explicado pela falta de dados observados que podem ter ocasionado maiores erros na utilização de interpolações para o cálculo das reanálises.


Pode ver como o excedente (EXC)(Figura 4) acaba não acontecendo e o déficit prevalece durante maior parte do ano, nos dados observado, já para os dados de reanálise este comportamento não é bem representado, existe nos meses mais chuvoso um excedente, em janeiro e fevereiro, isso pode estar atrelado pela grande diferença da precipitação, e o a ETo não acompanhar estes valores.

	Reanálise										
Mês	Temp	ЕТо	Prec	ALT	ETR	DEF	EXC				
Janeiro	27	139,380	204	23,99	138,00	0,00	42				
Fevereiro	27	127,535	175	0,00	126,15	0,00	48				
Março	27	115,392	142	-23,99	114,09	0,00	28				
Abril	26	101,661	79	4,23	102,36	17,79	0				
Maio	23	76,902	63	-10,06	72,53	3,33	0				
Junho	22	69,289	30	-22,63	51,53	16,30	0				
Julho	22	75,287	25	-18,71	43,01	31,29	0				
Agosto	24	95,456	36	-12,82	48,40	45,95	0				
Setembro	26	111,571	57	-6,63	63,68	46,75	0				
Outubro	27	135,522	112	-1,87	114,13	20,28	0				
Novembro	27	134,746	154	20,06	133,44	0,00	0				
Dezembro	28	142,222	189	48,42	140,86	0,00	0				
	Estação Automática										
Mês	Temp	ЕТо	Prec	ALT	ETR	DEF	EXC				
Janeiro	27,7	149,2	169,1	19,9	149,2	0,0	0,0				
Fevereiro	27,3	129,0	134,2	5,2	129,0	0,0	0,0				
Março	27,1	133,9	136,3	2,4	133,9	0,0	0,0				
Abril	25,9	118,8	69,6	-16,9	86,5	32,3	0,0				
Maio	23,2	99,5	54,8	-9,6	64,4	35,2	0,0				
Junho	21,9	88,1	20,4	-8,4	28,8	59,3	0,0				
Julho	21,5	104,2	19,9	-4,9	24,8	79,4	0,0				
Agosto	23,4	117,6	32,8	-2,1	34,9	82,7	0,0				
Setembro	25,1	127,0	40,1	-0,9	41,0	86,0	0,0				
Outubro	27,2	154,0	85,7	-0,3	86,0	67,9	0,0				
Novembro	27,6	155,8	117,5	-0,1	117,6	38,1	0,0				
Dezembro	27,8	156,1	171,9	15,8	156,1	0,0	0,0				

Quadro 2: Comparação das variáveis hidro meteorológicas.

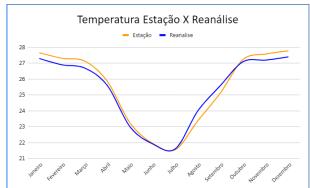



Figura 3: Comparação de precipitação (mm) e temperatura (°C).

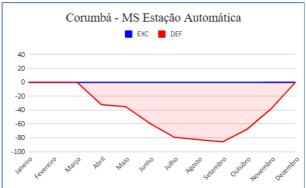


Figura 4: Balanço hídrico climatológico com estação automática e dados de reanalise.

Conclusões

Pode-se observar claramente que os dados da reanálise têm valores bem acima na precipitação trazendo uma diferença com a estação no momento da realização do BCH, foi visto por Braga (2021), que também há uma subestimação para a variável de vento, onde este altera o a ETo trazendo mais uma diferença no BCH. Mesmo existindo um padrão similar da temperatura e da precipitação para região de Corumbá, o BCH da reanalise não representa bem a região isto pode estar associado superestimação das variáveis. Para a melhora do BCH, se propõe a realização de outros métodos para esta região podendo representar melhor, também um outro valor de referência para o CAD visto que para região do Pantanal o seu solo é em maioria argiloso trazendo uma melhor representação da região (Soares,

2016).

Como a reanalises são adaptadas de acordo com região de interesse dos centros meteorológicos, a parametrização para regiões diferentes pode trazer diferentes comportamentos para cada região do globo. Também não conseguindo representar a vegetação da superfície (Nogueira, 2021), onde traz mais problemas para calcular o ETo e BCH.

Com isso estudos com outros métodos de ETo, outros valores de CAD e outros métodos de estimativa de BCH devem ser pesquisados para entender como o ERA5 Land se comporta para esta região e qual é capaz de melhor descrever. A utilização do ERA5 Land não é recomenda para estimar o BCH, porém para compreender a climatologia da região ela foi bem eficaz, podendo ser aplicada para outras regiões e representar épocas secas e chuvosas, com uma baixa acurácia.

REFERÊNCIAS

ALLEN, R. G.; PEREIRA, L.; RAES, D.; SMITH, M. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO, 1998. (FAO. Irrigation and Drainage Paper, 56). Disponível em: https://www.fao.org/3/X0490E/x0490e00.htm. Acesso em: 15 ago. 2023.

BRAGA, Rose Angela Hilda Wanzeler; SANTOS, Eliane Barbosa; BARROS, Matheus Ferreira de. Validação de dados de vento da reanálise ERA5-LAND para estimativa de potencial eólico no estado do Pará. Revista Brasileira de Energia, v. 27, n. 4, 2021.

INMET, SISDAGRO. Balanço hídrico climatológico mensal. Disponível em: http://sisdagro.inmet.gov.br/sisdagro/app/index. Acesso em: 15 ago. 2023.

MUÑOZ SABATER, J. ERA5-Land monthly averaged data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.68d2bb30. Acesso em: 06 set. 2024.

NOGUEIRA, Miguel, et al. Upgrading land-cover and vegetation seasonality in the ECMWF coupled system: verification with FLUXNET sites, METEOSAT satellite land surface temperatures, and ERA5 atmospheric reanalysis. Journal of Geophysical Research: Atmospheres, v. 126, n. 15, 2021. DOI: 10.1029/2020JD034163.

PREFEITURA CORUMBÁ. Minha Corumbá. Corumbá, 2023. Disponível em: https://corumba.ms.gov.br/paginas/Minha%20Corumb%C3%A1. Acesso em: 15 set. 2023.

REBOITA, M. S.; RODRIGUES, M.; SILVA, L. F.; ALVES, M. A. Aspectos climáticos de Minas Gerais. Revista Brasileira de Climatologia, v. 17, p. 206-226, 2015.

SETZER, José. Atlas climático e ecológico do Estado de São Paulo. Comissão Interestadual da Bacia Paraná-Uruguai, 1966.

SOARES, A. F.; SILVA, J. S. V.; FERRARI, D. L. Solos da paisagem do Pantanal brasileiro – adequação para o atual sistema de classificação. 2006.

THORNTHWAITE, C. W.; MATHER, J. R. The water balance. Centerton, NJ: Drexel Institute of Technology - Laboratory of Climatology, 1955. 104 p. (Publications in Climatology, vol. VIII, n. 1).

VICENTE, M. Pesquisa mostra avanço na agropecuária sustentável brasileira. Embrapa, 2016. Disponível em: https://www.embrapa.br/busca-de-noticias/-/noticia/17750377/pesquisa-mostra-avanco-na-agropecuaria-sustentavel-brasileira. Acesso em: 15 ago. 2023.